
Monitoring and Controlling
Distributed Applications Using Lomita*

(Position Paper)

Keith Marzullo
Ida M. Szafranska

TR 92-1306
October 1992

/,v -

Department of Computer Science
Cornell University
Ithaca, NY 14853-7501

*This work was supported by the Defense Advanced Research Projects Agency
(DoD) under NASA Ames grant number NAG 2-593, Contract N00140-87-C-8904,
and by grants from IBM T.J. Watson, IBM Endicott, Xerox Webster Research Center
and Siemens RTL. The views, opinions and findings contained in this report are those
of the authors and should not be construed as an official Department of Defense
position, policy or decision.

Monitoring and Controlling Distributed Applications using Lomita*

POSITION PAPER

Keith Marzul!o Ida M. Szafranska

Cornell University

Department of Computer Science

Ithaca, NY 14853-7501

16 October 1992

Over the last four years, we have developed the

Meta toolkit for controlling distributed applica-

tions. This toolkit has been publically available

as part of the academic ISIS release, and has

been used both within and outside of Cornell for

building various system monitoring and control

applications [5, 3, 4].

One major stumbling block with using Meta

has been the language (called NPL) it supports.

NPL is very low-level and using it is difficult,

in the same way it is difficult to write machine

language programs or raw Postscript programs.

Hence, we have spent the last six months build-

ing a higher-level language and runtime environ-

ment. Our hope is that with this higher-level

approach, we will be able to write more compli-

cated Meta applications and thereby concentrate

more on the use (and limitations) of Meta as an
architecture.

This note proceeds as follows. In Section 1, we
review the Meta toolkit and its intended use. In

Section 2 we describe our goals with Lomita and

give an overview of its architecture and language

syntax. In Section 3 we give a detailed example

of the use of Lomita by presenting a complete

*This work was supported by the Defense Advanced
Research Projects Agency (DoD) under NASA Ames
grant number NAG 2-593, Contract N00140-87-C-8904,
and by grants from IBM T.J. Watson, IBM Endicott,
Xerox Webster Research Center, and Siemens RTL. The
views, opinions, and findings contained in this report are
those of the authors and should not be construed as an of-
ficial Department of Defense position, policy, or decision.

program for a load-adaptable service. .
=

1 Review of Meta

A reactive system architecture partitions the sys-

tem into two components: an active environment

and an input-driven control program. The con-

trol program monitors the state of the environ-

ment through a sensor abstraction, and when the
state meets some condition then it alters t!le en-

vironl:nent's state through an actuator abstrac-

tion. Process control systems naturally have a

reactive architecture, as does system and net-

work monitoring, software tool integration, de-

bugging, and automatic system management.
The Meta toolkit assists in the construction of

distributed and reliable (albeit non-real-tinm) re-

active systems. With Meta, one call instrument

a program with software sensors and actuators

in order to expose its state for control. Then, a

control program can be written to monitor and

control the instrumented programs. The Mcta

architecture interprets the control program in a

distributed manner in order to supply both lower

latency and tolerance to partial failures of the

environment. Furthermore, the monitoring and

control is done in a way to guarantee that the

observed global state is consistent and change d

atomically with respect to the monitoring of the

control program.

For example, consider a simple computation

server that accepts jobs and executes them in

the orderreceived(thependingjob requestsare
kept in a queue). The load of a serveris the
estimatedtime neededto completeall submitted

jobs. As well as being submitted, a job can be
cancelled and the server can be stopped (losing

all submitted jobs).

This server can be instrumented with a sen-

sor that gives the load of the server and a sensor

that gives the queue of submitted jobs. It can
also be instrumented with two actuators: one

that cancels a job and one that stops the server.

Then, Meta can be used to construct a service
out of servers--for example, an actuator can be

defined that submits a job to the lightest-loaded

server of a group of servers, and a sensor can be

defined that gives the average load of a set of

servers. And, a control program can be written

that creates additional servers on llghtly-loaded

machines when the average load is too high. Sec-

tion 3 develops this example more fully.

There are two steps to managing a distributed

application with Meta: instrumenting the appli-

cation and writing the control program. Instru-

mentation is the more straightforward task. A

Meta sensor or actuator is simply a procedure

that is added to the application, where a sensor

has no side-effects and an actuator changes the

state of the application and returns success or

failure. These procedures are registered with

Meta using a library routine, which also asso-

ciates a name and a type signature with the sen-

sor or actuator. Finally, Meta has a set of li-

brary routines that synchronizes the sampling of
sensors and invocation of actuators with its own

operation in order to guarantee that Meta sees

and alters on only locally consistent states.

An instrumented program is an example of a

Meta context, that is, a named set of sensors and

actuators. In Meta, each context belongs to a

single context class that defines the types of its
sensors and actuators. For example, if we as-

sume that only one computation server will be

run on any given machine, then the load sen-

sor of a computation server running on a ma-

chine grimnir could be named serv(grimnir).load,

where the context is named serv(grimnir) and is

of a context class named serv.

Instrumented programs define what is called
in Meta base contexts. Base contexts can be

grouped into group contexts 1. Put another way,

a group context class can be defined as a col-
lection of contexts from the same base context

class, and a base context can join and leave any

number of group contexts of a compatible class.
Each sensor of the base context class exists in

the group context class except that the type of

the sensor is promoted to a set value. For ex-

ample, assume that service(i) is a group context

class comprised of serv contexts. If the load sen-

sor in the context class serv has an integer type,
then service context class also has a load sensor

but its type is set of integers. The value of this

sensor in some group context is the set of load

sensor values, one for each base context that is a

member of the group context.

Similarly, the actuation of service(1).stop will

actuate serv(x).stop for every serv(x) that is a

member of service(l), and the value of the actua-
tion is success if all base actuations succeed; else

the value is failure. Actuators in group context

classes can also take two additional parameters:

a positive integer and a set of values obtained

from a sensor of the group. The first parameter

specifies a number k of base contexts and the sec-

ond parameter specifies a preference ranking r of

the base contexts indicated by the source of the

individual value. The actuation will invoke the

actuator on the first k contexts denoted by r. For

each that returns failure, an additional context

is chosen from r. The group actuation will return

success if k base contexts return success. For

example, service(1).shutdown(2, sort(load)) will

shut down the two lightest-loaded servers that

are members of service(i).

Control programs are written in a simple pro-

gramming language called NPL. An NPL com-

mand is equivalent to an atomic guarded com-

mand (¢1 --+ all] .-.]]¢m --+ c_,,,), where each

¢i is a predicate expression over sensor values

and each eq is a sequence of actuator invocations

1A group context is called an aggregate in Meta. Meta
is somewhat confusing in terms of contexts and context
classes, however, and so we use the (hopefully clearer)
Lomita terminology here.

whoseparameterscan be expressions of sensor

values. The meaning of such a command is that

it blocks until some ¢i is true, _at which point the

corresponding a_ executes, and any effects of ai

are not visible to other guarded commands until

a_ terminates. Such commands can be one-shot

(once an ai executes the command terminates)

or iterative (once an ai executes the command

resumes waiting for a predicate to become true).

Meta also guarantees that an NPL command ob-

serves a valid sequence of global states. That is,

not only is each global state used to evaluate a

¢i a valid global state [1], but the sequence of
states is also consistent with the actual run of

the environment [2].

Each context has associated with it an inter-

preter of NPL commands. For base contexts,

the interpreter resides in the same address space

as the instrumented program. An NPL com-

mand can be run in any interpreter (that is, an

NPL program using fully-quallfied names can be

submitted to any context without changing its

meaning), although the latency due to network

communication is large--a command may run up
to 500 times slower in a remote context than in

a local context. Of course, some programs re-
fer to more than one context and so must refer

to some remote sensor or actuator no matter in

which context they are run.

Interpreters for group contexts are Created by

informing an interpreter that it should also im-

plement the group context. For example, the

interpreter for serv(grimnir) can be told to also

implement the service(l) context. In addition,

more than one interpreter can be so informed,

in which case they run in a replicated mode--

even though an interpreter fails, the context will

remain accessible and the NPL commands it is

running will continue to run.

2 Lomita

Although Meta is a powerful system, it is ex-

tremely awkward to use. The NPL programs one

writes for even simple control programs are very

hard to read and to validate their correctness.

Our goal with Lomita is to provide enough syn-

tax and supporting semantics in order to make
Meta usable.

The central idea of Lomita is to fully im-

plement the context class abstraction. Rather

than submitting NPL programs to contexts, one

writes a description of the context classes which

includes a set of atomic commands (in a syn-

tax much more readable than NPL). The Lomita

runtime system then ensures that contexts are

initialized and recovered with the appropriate

NPL commands.

Lomita consists of two parts. First, there is

a compiler that takes Lomita programs and pro-

duces an object file. Second, there is a replicated

fault-tolerant service called the Lomita runtime

that, when given a Lomita object file, loads the
file into an internal database. The runtime moni-

tors the currently active contexts and downloads
the relevant NPL commands from its internal

database when necessary. The runtime also cre-

ates interpreters for group contexts when they
are needed.

A Lomita program consists of a set of context
class definitions. Each context class definition

specifies the attributes of the context class and

lists the rules to be run in each context of that

context class. Attributes can either be Meta sen-

sors or actuators, they can be functions or they

can be the Lomita key construct.

The example in Section 3 gives several context

class definitions. For example, the definition of
the machine context declares that there is an in-

strumented program that supplies sensors on the

load of the machine and on who is logged in, and
extends this context class with some additional

sensors, such as when the machine is to be con-

sidered "busy". The definition also colltains a

single rule that initializes a value by invoking

the "stop_server" actuator.

There are three different kinds of context

classes that can be declared in a Lomita pro-

gram: the global context class, base context

classes, and group context classes. Each con-
text class defines a set of attrib_ltes and r_lles

that apply to all contexts of that class. Base

context classes: and group context classes corre-
spond with their equivalent in Meta. The global

contextclasscontainsa singlecontext,calledthe

global context. The attributesdefined in the

globalcontext are availablein a_ contexts.For

example, every context has itsown printactua-

tor,and so print is defined as an actuator of the

global context.
Lomita rules has the following syntax:

if/when predicate expression

do sequence of actuator invocations end

[else if/when predicate expression

do sequence of actuator invocations end]"

By default, a Lomita rule is translated into

an iterative guarded command, but a program-

mer can stop iteration by using the exit actu-
ator. The difference between "if" and "when"

corresponds to whether the action is enabled in

any state satisfying the predicate expression or

only in a state in which the predicate becomes

true. For example, the Lomita rule

when "marzullo" in login

do prlnt("watch out!") end

prints the message "watch out!" once after each
time "marzullo" logs in, while the rule

if "marzullo" in login

do print("watch out!") end

continuously prints the message "watch out!" as

long as "marzullo" is logged in.

Group context classes can also specify rules
that are to be run in the base context of all mem-

bers of a group. Such rules are specified by a

with statement, which has the following syntax:

with expression/all

[select when predicate expression /

remove when predicate expression /

rule]* end

The expression following the with keyword is

called the key expression and when evaluated in

the base context, yields the value of the key as-

sociated with the group context. A select state-

ment generates a rule for joining the group and

remove generatesa rulefor leavingthe group.

For example, considerthe followingdefinitionof

a group of machines:

free_machines: machine group

attributes

kay gp : string

end

with type

select when ! busy

remove when busy
if timer (10000)

do print (name,
" has been free for I0 seconds.")

end

end

The key for the group is the value of the type

sensor, which yields the type of instrumented

machine. Hence, this context class partitions

machines into group contexts all containing the

same type of machine. The rule in the with
statement is run in each machine context that

is a member of a free_machines context--in this

case, a free machine will print every ten seconds
that it is a free machine.

3 Example

The following is a complete Lomita 1.0 program.

The program serv services a simple request for

computation (the computation is given a name

and an estimated amount of time). An instru-
mented server is a member of the context class

serv, and the context is named by the machine it

runs on (e.g., serv(ydalir)). Servers are grouped

into two groups--the group of all servers, and the

group of servers that are not overloaded (called

free_servers). Furthermore, the new actuator

add1 defined in free_servers submits a job to the

lightest-loaded free server.

A set of rules, associated with the group of all

servers, governs the number of server replicas.

These rules specify that the number of replicas

must be between min_rep and max_rep. Further-

more, if the average load of the servers is too

high, then a new server is created, and if the av-

erage load of the servers is too low and there is a

server with no jobs, then that server is deleted.

#define high_load 5.0
#define max_users 2

4

#define

#define

#define

#define

#define

#define

#define

#define

#define

dally 30

max_load 30

min_load 2

max_rep 8

min_rep 1
serv_cmd "lusrlmetalutils/serva"

has_server getl

set_has_server set(l, TRUE)

set_no_server set(l, FALSE)

#define

#define

#define

#define

#define

wait_new_size getl

set_new_size set(l, TRUE)

reset_new_size set(l, FALSE)

last_nservers get2

set_nservers set(2, hUm_servers)

global attributes

sensor get1: boolean

sensor get2: integer

function avg (any): any

function sort ({any}): {any}

function timer (integer): boolean

function select_eq_int (

{integer}, integer): {integer}

actuator exit

actuator set (integer, any)

actuator print (any)

actuator shell (any)

end

machine: base

attributes

key name: string
sensor load: real

sensor alive: boolean

sensor busy: boolean:= load > high_load

[] size(login) > max_users

[I has_server

sensor login: {string}

actuator exec (cmd: string)

actuator start_server: =

exec(serv_cmd);

set_has_server;

leave("freemachines")

actuator stop_server:= set_no_server

end

if true do stop_server; exit end

end

serv: base

attributes

key name: string

sensor load: integer

sensor alive: boolean

sensor queue: _string_

sensor overload: boolean:=

load > max_load

actuator add (

job_name: string, job_time: string)

actuator remove (job_name: string)

actuator shutdown

actuator stop:= shutdown;

machine(name).stop_server

end

end

/* all machines that aren't busy */

freemachines: machine group

attributes

key not_needed

sensor mean_load: real: = avg(load)

sensor num_freemachines:= size(alive)

actuator start_server (

number: integer, pref: any)

end

with all

select when ! busy

remove when busy

if timer(dally*1000)

do print(

name,

" has been free for ",

dally, " seconds.") end

end

end

/* all servers that aren't overloaded */

/* actuator addl submits jobto lightest */

/* loaded server. */

freeservers: serv group

attributes

key not_needed

sensor num_freeservers:= size(alive)

actuator add (

number: integer, pref: {integer_,

job_name: string, job_time: string)

actuator addl (

jname: string, jtime: string):=

add (I, sort(load), jname, jtime);

end

with all

select when !overload

remove when overload

end

end

/* All servers. Create a server if the */

/* average load is too high, and destroy */

/* an idle server if the average load is */
/* too low. */

servers: serv group
attributes

key not_needed

sensor num_servers:= size(alive)

actuator add (

number: integer, pref: {integer_,

job_name: string, job_time: string)

actuator stop (

number: integer, pref: _integer_)

end

with all select all end

if true do set_new_size; exit end

when num_servers <> last_nservers

do set_nservers; set_new_size end

i_ wait_new_size

_a (freemachines.num_freemachines > O)

&_ (hum_servers s= BOTTOM

[J num_servers < nin_rep

[[(avE(load) > max_load

_ hUm.servers < max_rep))

do freemachines.start_server(

1, sort(load));

reset_new_size end

if wait_new_size

kt (num_servers > max_rep

IJ (avE(load) < min_load

_ hum_servers > min.rep))

do stop(l, select_eq_int(load, 0));

reset_new_size end

end

[2]

[3]

[4]

[5]

Distributed Systems. ACM Transactions on

Computer Systems, 3(1):63-75 (February

1985).

K. MarzuUo and G. Neiger. Detection of

Global State Predicates. Proceedings of the

Fifth Workshop on Distributed Algorithms

and Graphs (Springer-Verlag LNCS 579) pp

254-272. Delphi, Greece, October 1991.

K. Marzullo and M. Wood. Tools for Dis-

tributed Application Management. In Pro-

ceedings of the Spring 1991 EurOpen Con-

ference, Tromso, Norway, May 1991, pp
185-196.

K. Marzullo and M. Wood. Tools for Man-

aging and Controlling Distributed Appli-

cations. CorneU University Department of

Computer Science TR 91- 1187 (February

1991, submitted for journal publication).

K. Marzullo, M. Wood, K. Birman and R.

Cooper. Tools for Monitoring and Control-

ling Distributed Applications. IEEE Com_

puter 24(8): 42-51 (August 1991).

Acknowledgements Mark Wood was the co-

designer and principle software architect of the

original Meta system. Tim Clark designed and

built the Lomita runtime system, and Sue Honig

designed and built the interface between Lomita

and Meta. Ken Birman, Robert Cooper and
Fred B. Schneider have all contributed ideas to

both Meta and Lomita.

References

[1] K. M. Chandy and L. Lamport. Distributed

Snapshots: Determining Global States of

6

